
This chapter describes a mathematical model of epigenesis, and starts
by translating the traditional but vague definitions of that concept
into expressions that are increasingly more precise. The first step
consists in defining epigenesis as a convergent increase of complexity.
The second states that this process is equivalent to a reconstruction
from incomplete information, and in the third step this becomes a
reconstruction from incomplete projections. In this way, we can model
epigenesis as a special case of the problem of reconstructing
structures from projections, a problem that arises in many fields
(for example in computerised tomography) and whose mathematics
is well known. What is less well known is that a reconstruction can
be achieved even when the starting information is incomplete,
provided that appropriate memories and codes are employed. This is
illustrated with a few practical examples, and the logic of that unusual
kind of reconstruction is described first in words and then in formulae.
At that stage we can go back to biological epigenesis and conclude
that a convergent increase of complexity in organic life necessarily
requires organic codes and organic memories. And this gives us the
two critical concepts that will be used in the rest of the book for an
entirely new approach to the problem of biological complexity.

The logic of embryonic development

The discovery of genes that control embryonic development has
started a true revolution in biology, both from an experimental and
from a theoretical point of view. On the experimental side, it has
opened fields of research that previously seemed unapproachable.

3

A NEW MODEL FOR BIOLOGY

Laptop
Highlight



68

From a theoretical point of view, it has inspired the conclusion that
embryonic development is the execution of a genetic program, in the
sense that all processes of ontogenesis depend, more or less indirectly,
on the transcription of genes. Unfortunately, many have also concluded
that the central problem of development – the problem of form – has
been, in principle, resolved. Many details are still to be worked out, it
is said, but the “logic” is now clear because the form of an organism
depends on its genes.

In his book The Problems of Biology (1986), John Maynard Smith
has lucidly sounded a note of caution against this attitude:
“It is popular nowadays to say that morphogenesis (that is the
development of form) is programmed by the genes. I think that this
statement, although in a sense true, is unhelpful. Unless we understand
how the program works, the statement gives us a false impression that
we understand something when we do not … One reason why we find
it so hard to understand the development of form may be that we do not
make machines that develop: often we understand biological phenomena
only when we have invented machines with similar properties … and
we do not make ‘embryo’ machines.”

Maynard Smith’s point can also be expressed in another way:
embryonic development is a process that increases the complexity of
a living system, but we do not know how to build machines that
increase their own complexity, and we cannot therefore understand
the logic of development. We can also leave aside the physical
construction of machines and concern ourselves only with their
planning. If we could prove, with a mathematical model, that it is
possible to increase the complexity of a system, we already would
have taken a major step forward. The search for the logic of
development begins therefore with the search of a mathematical model
for systems which are capable of increasing their own complexity.

At this point, however, a formal distinction between two very
different cases is called for. An increase in complexity took place even
during the history of life, but in this case new structures arose by
chance mutations, and the increase was a divergent process. In
embryonic development, on the contrary, new structures are never
formed by chance, and we are dealing with a convergent increase of
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complexity. This is the great difference between evolution and
ontogenesis, and such a dichotomy does require two very different
types of mathematical models.

In the case of evolution, we already have algorithms that simulate
the effects of natural selection, and we do therefore understand how
a divergent increase of complexity can take place. But we do not have
algorithms that describe a convergent increase, and it is for this reason
that the logic of the embryos still eludes us. The real key to embryonic
development is the logic of systems which are capable of increasing
their complexity in a convergent way, and in order to understand this
we need, if not a machine, at least a model that is functioning according
to that logic.

Reconstruction from incomplete projections

The starting-point for a new model of embryonic development is the
reconstruction of structures from their projections, a problem which
arises in many fields such as computerised tomography and electron
microscopy. The image produced by X-rays on a radiographic plate,
for example, is a projection of a three-dimensional body on a two-
dimensional surface, and this process is inevitably accompanied by a
loss of information. The result, to quote Hounsfield (1972), is “like
having a whole book projected on a single sheet of paper, so that the
information of any one page cannot be extracted from the superimposed
information of all the other pages”. In order to reconstruct the original
structure, therefore, it is necessary to collect a plurality of projections
at different angles, as shown in Figure 3.1. The minimum number of
projections that must be collected is known from basic theorems, and
has an clear intuitive meaning. The projections taken at different angles
carry different information, and their totality must contain (in a
compressed form) all the information that was present in the original
structure.

As for the reconstruction algorithms, we can divide them in two
major groups: iterative and non-iterative techniques. A non-iterative
method produces the final result with a formula which is applied only
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once to the experimental data. In this case the reconstruction is precise,
because the formula provides a rigorous solution, but the procedure
is cumbersome because all data are processed together. The iterative
algorithms have been introduced precisely in order to simplify the
reconstruction procedure and still obtain satisfactory results. In these
cases, a reconstruction produces only an approximation of the original
structure, and it is therefore necessary to repeat the operations many
times in order to get progressively closer to the original structure.

Iterative algorithms are clearly less precise than single-application
techniques, but their great advantage is that they introduce the time
dimension in the computation, and this makes them particularly
suitable to simulate biological processes. Even more important is the
fact that the temporal dimension allows us to reconsider the problem
of the minimum number of projections that are required for a complete
reconstruction. During an iterative procedure, we could discover
properties of the original structures that were not recorded in the
projections, and in this case we could obtain a reconstruction even if

Figure 3.1 During the projection of a three-dimensional structure onto a
two-dimensional plane, information is lost, and it is therefore necessary to
collect a plurality of projections at different angles in order to reconstruct the
original structure.

A new model for biology



71

the number of projections is appreciably lower than the theoretical
minimum. This brings us face to face with an entirely new problem:
the problem of reconstructing structures from incomplete projections,
where projections are said to be incomplete when their number is at
least one order of magnitude less than the theoretical minimum. The
problem, in other words, is to make a complete reconstruction with
an amount of information which is much lower than that of the original
structure.

The interesting point is that this is a mathematical version of the
problem that we face in embryonic development. The fertilised egg
contains far less information than the adult organism (whatever
criterion is used to measure information in biological systems), and
embryonic development can be described therefore as a process that
is reconstructing a structure from incomplete information. This is
another way of saying that embryonic development is a process that
increases the complexity of a living system. The reconstruction of
structures from incomplete information, in short, is a model that could
help us understand how it is possible for a system to obtain a
convergent increase of complexity.

A memory-building approach

An iterative reconstruction algorithm produces a series of pictures
which are increasingly more accurate approximations of the original
structure. Any reconstructed picture is affected by errors, and in
general there is no way of knowing where the errors are falling, but
there are two outstanding exceptions to this rule. The values which
are below the minimum or above the maximum are clearly “illegal”,
and the algorithm gives us the precise coordinates of the points where
they appear. This makes it possible to correct those errors by setting
to the minimum or to the maximum all values which are respectively
below or above the legal limits. This operation (which is called a
reconstruction constraint) does improve the results and so it is normally
applied at regular intervals. Every time that we apply this constraint,
however, we lose some information, because the coordinates of the
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illegal values are lost. Keeping information about errors may not seem
important, but let us assume that it could be, and let us see if we can
save it. This can be done by using a “memory” picture where we store
the coordinates and the values of the illegal points before applying
the constraint. In this case we need a more complex algorithm, because
we have to perform in parallel two different reconstruction: one for
the structure and one for the memory, as illustrated in Figure 3.2. But
what is the point of keeping a memory of the reconstruction errors?

MEMORY
1

MEMORY
N

STRUCTURE
1

STRUCTURE

MEMORY
2

STRUCTURE
2

STRUCTURE
N

MEMORY

Figure 3.2  A reconstruction from incomplete projections is a method
where structure matrices and memory matrices are reconstructed in parallel.
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The point is that we can study their pattern, and that turns out to
have unexpected features. Since the errors are random events, we
would expect a statistical distribution, but this is not what happens in
all cases. It is true that in many points the errors are totally random,
but there invariably are other points where this does not happen. In
those points the illegal values keep reappearing each time, and always
with the same sign, which explains why such points have been called
vortices. Figure 3.3 is a schematic illustration of what happens. The
patterns of the illegal values look totally random when they are
examined one by one (Figure 3.3A), but when they are memorised
together (Figure 3.3B) the statistical fluctuations disappear and only
the vortices stand up. Now we have a new type of information before
us. When an illegal value has consistently reappeared in the same
point for a number of times (we can choose 5, 10 or any other
convenient number), we can reasonably conclude that the value of
that point is either a minimum or a maximum. We can therefore “fix”
the value of that point, and this means that the total number of the
unknowns is reduced by one. By repeating the operation, the number
of the unknowns becomes progressively smaller, and when it reaches
the number of the equations a complete reconstruction is possible.
That is the result we were looking for. With appropriate “tools” we
can indeed obtain a complete reconstruction of the original structure
from incomplete information.

Let us now take a closer look at those “tools”. One is the memory
picture that must be reconstructed in parallel with the structure, but
that is not all. The new information of the vortices appear in the
memory space, but we use that information in the structure space,
because it is here that we reduce the number of the unknowns. We
are in fact transferring information from the memory space to the
structure space with a conventional rule of the type “If a vortex appears
in the memory space, fix the corresponding point in the structure space
to a minimum or a maximum.” A reconstruction from incomplete
information, in short, does not require only a memory. It requires
memory and codes. The reconstruction memory is where new
information appears. The reconstruction codes are the tools that
transfer information from the memory to the structure.
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Figure 3.3 The errors produced by an iterative reconstruction algorithm
have patterns which appear, at each iteration, completely random (A), but if
successive patterns are memorised together, it is possible to observe regular
structures appearing in the memory matrix (B).
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     The biological implications of the above model are straightforward.
Embryonic development is also a reconstruction of structures from
incomplete information, and so it must employ organic memories and
organic codes. Before looking for the presence of these biological
tools in nature, however, we must examine the mathematics of the
new reconstruction method. Today there is a widespread belief that a
convergent increase of information is impossible (despite the evidence
from the embryos) and only mathematics can give us the proof of the
contrary.

The algebraic method

The simplest case is the reconstruction of two-dimensional structures
from one-dimensional projections. A digitised two-dimensional
structure, for example a television picture, can be described as an
n . n  matrix  [fij] of side D and cells (i, j) of side d = D/n (Figure 3.4).
A projection of the picture at an angle � is a set of parallel rays (�,k)
which totally cover the picture at the angle �, and any projection ray
can be represented by an n . n matrix (Figure 3.5) where each element
aij

�k is the fraction of the cell (i, j) which is contained within the ray
(�,k). The picture matrix and the ray-matrices are easily transformed
into vectors (Figure 3.6). More precisely, the picture matrix [fij] is
replaced by a column-vector [fz], and the ray matrices [aij

�k] are
described by row-vectors [a

z
�k] with the transformations:

fij    fz     and        aij
�k    az

�k       with     z = 1, . . . . . . . , n2 = t

In this way, the projection values  g
�k  of any ray (�,k) are described

by the scalar product of the vectors [az
�k] and [fz]:

g
�k

  =  a1
�k f1 + a2

�k f2 + . . . . . . . + a
t
�k f

t

which is a linear equation with  t = n2 unknowns.
If we have p projections of a picture and each projection contains r

rays, we have a system of  p . r equations in  n2 unknowns, and a solution
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Figure 3.4 A digitized two-dimensional structure can be represented by a
matrix of side D which is made of n . n cells, or pixels, of side d. The projection
of a picture can be represented by a set of adjacent parallel rays, of equal
width w, which totally covers the matrix of the picture.
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Figure 3.5 A projection ray that crosses an n . n picture matrix can also be
represented by an n . n matrix, where each cell (i, j) of the ray matrix contains
a number that represents the fraction of the cell (i, j) of the picture matrix
which is contained within the projection ray.
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exists if the number of linearly independent equations is equal to the
number of unknowns, i.e. if

p . r = n2

In order to have all equations in a compact form, the double index
(�,k) of each ray is replaced by the single index (h) with the
transformations

g
�k    gh      and      az

�k    ahz        with  h = 1, . . . . . . . , p . r = t

In this way, all the projections of a picture are represented by a single
column vector [gh], and the geometrical parameters form a matrix
[ahz], known as the weighting factors matrix, which has   p  . r = t   rows

Figure 3.6 A picture matrix and a ray matrix can both be represented by
vectors. More precisely, by a column vector for the picture matrix, and by a
row vector for the ray matrix.
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and  n2
 = t  columns, i.e. a matrix of  t2

 = n4 cells. All projection equations
of a picture can be represented therefore by a single matrix equation:

(3.1)

A reconstruction is a procedure which reverses the projection
process, and the reconstruction equations can therefore be obtained
from equation 3.1 with a matrix [b

hz
] which represents the inverse

weighting factors matrix:

f1 g1 b11 ............. b1t

=

f
t

g
t

b
t1 .............. b

tt

The values  fz  of the reconstructed picture are obtained therefore by
the following equations:

f1  =  g1 b11  +  g2 b12  + . . . . . .  +  gt b1t

(3.3)

f
t
  =  g1 b 

t1  +  g2 b 
t2  + . . . . . .  +  g

t
 b tt

Once the weighting factors are calculated, the reconstruction values
are obtained by equations 3.3 with simple additions and
multiplications. This classic algebraic method, known as matrix
inversion, is rigorous and straightforward, but in practice it is employed

...
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...
...

...
...

...
...

...
...

...
..

a11 .............. a1t f1 g1

=

at1 .............. att ft gt

...
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only with small pictures because the weighting factors matrix contains
n4 cells, and its dimensions become quickly prohibitive with increasing
values of n (for a picture with 100 . 100  cells we would need a weighting
factors matrix with 1004 = 108 cells).

The theoretical limit

Matrix inversion is not widely used in practice, but from a theoretical
point of view is extremely useful, because it allows us to calculate the
minimum number of projections that are required for a complete
reconstruction. If we have p projections of a structure, and each
projection contains r rays, a reconstruction procedure amounts to
solving a system of  p . r  equations in  n2  unknowns, and algebra tells
us that a solution exists only if the number of linearly independent
equations is equal to the number of the unknowns.

The condition that equations are linearly independent is easily
understandable, because it amounts to saying that projections obtained
at different angles must transport different information (if they didn’t,
the total information of the projections would be inferior to that of
the original picture and the reconstruction would be impossible). In
practice, the linear independence condition implies that (1) the angle
between any two projections must be greater than a critical minimum
(which means that the projections must be equally distributed in the
180o angular range), and (2) the ray width (w) and the cell width (d)
must have the same order of magnitude, i.e.

                                         w ≈ d

Since    d =  D      and      w =   D(�)  ≈   D
          n                        r            r

equation 3.4 is equivalent to    D   ≈  D   and therefore  n  ≈  r
          n       r

The algebraic method
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This means that the requirement   p . r = n2   becomes   p . n ≈ n2 , which
amounts to

                                              p  ≈  n

The result is that the minimum number of projections that are required
for reconstructing a structure of n2 unknowns is comparable to the square
root of the number of the unknowns.

It is important to notice that, in real-life applications, the actual
number of projections must always be greater (often much greater)
than the theoretical minimum, because of the need to compensate
the inevitable loss of information which is produced by various
types of noise. It is also important to notice that the theoretical
minimum obtained with non-algebraic methods (Crowther et al.,
1970) is never inferior to the algebraic minimum. Equation 3.5, in
other words, is the lowest possible estimate of the minimum number
of projections that are required for a complete reconstruction of
any given structure.

ART: an iterative algebraic method

The first algebraic reconstruction method was described by
Hounsfield in 1969 in a patent application for computerised
tomography, and an equivalent version was published independently
by Gordon, Bender and Herman in 1970 with the name of ART
(Algebraic Reconstruction Technique). Instead of resorting to the
matrix inversion approach (which requires matrices of n4 cells), the
reconstructions of this iterative method are performed with matrices
of n2 cells, and are therefore much simpler to handle. The algorithm
starts with a uniform matrix [f

ij
0 = constant], and performs an iterative

sequence of corrections which tend to bring the reconstructed matrix
increasingly closer to the original structure. The corrections consist
in calculating the differences between the projection values of the
original structure (g

�k) and those of the matrix reconstructed at
iteration q, (g

�k
q), and then in redistributing these differences among
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the cells of the reconstruction matrix. The reconstruction values at
iteration q + 1 are obtained therefore from those of iteration q with
the algorithm

g
�k  –  g

�k
q

   fij
q+1  =   fij

q   +     
_______________

         N
�k

where N
�k is the number of cells whose central points (i, j) are inside

the ray (�,k).
Gordon and Herman (1974) gave to equation 3.6 the name of

“unconstrained ART”, and called “partially constrained ART” the same
algorithm subjected to the constraint that negative values are set to
zero at the end of each iteration. In addition to this, they called “totally
constrained ART” the version where negative values are set to zero
and values which exceed the maximum M are set to M. At first, it may
appear that the totally constrained algorithm requires an a priori
knowledge of the maximum M, but in practice it is always possible to
obtain a satisfactory estimate of M even without that information.
This can be achieved with some preliminary runs of unconstrained
ART and partially constrained ART, because it can be shown that the
maxima Mu and Mp obtained with these algorithms satisfy the
relationship

Mu  ≤ M  ≤  Mp

and an average of Mu and Mp gives an estimate of M which becomes
increasingly accurate as the number of iterations increases.

Gordon and Herman have also proposed a variety of formulae
which allow one to compute the distance between the original picture
and the reconstructed matrix, and therefore to evaluate the efficiency
of a reconstruction algorithm. The ART method, in conclusion, is
simple, fast and versatile, which explains why it has become an ideal
starting-point for research on a new class of reconstruction algorithms.

ART: an iterative algebraic method
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The memory matrix

In reconstructions performed with iterative algorithms we usually find,
at each iteration, values that are below the minimum and above the
maximum, but we have already seen that it is always possible to bring
these “illegal” values within the legitimate range. Let us assume,
however, that we want to discover something else about those irregular
values, apart from the fact that they do exist. It could be interesting,
for example, to find out whether their distribution in space is totally
random or is following some kind of regularity.

In order to answer this kind of questions, we can perform
reconstructions by using not only the structure matrix  [fij]  but also
an additional matrix [m

ij
], of the same size, where we “memorise”

the illegal values which appear at each iteration. This allows us to
conserve a “memory” of them even when they have been erased from
the structure matrix, and for this reason their matrix has been called
the memory matrix.

The construction of the memory matrix is performed by taking as
a starting point a totally “blank” matrix [m

ij
0 = 0], and by applying

the following operations:

If fij  ≤  0 mij  =  mij – g
If fij  ≥  M mij  =  mij + g
otherwise mij  =  mij

where  g  is a parameter which is chosen to represent the presence of
an “illegality” in any convenient way.

The combination of a totally constrained algorithm with equations 3.7
of the memory matrix allows us to build, at each iteration, two very
different matrices: the structure matrix where the reconstruction appears,
and the memory matrix where the parameters of the illegal values are
gradually accumulated.

If the distribution of these values were totally random, the memory
matrix would tend to remain uniform, but in reality its behaviour is
much more complex than that. At many points the illegal values do
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have a random behaviour, in the sense that they appear and disappear
in a statistical way, but at other points the illegalities keep reappearing
with absolute regularity at each iteration, and always with the same
sign. These points clearly behave as “attractors” of density, and for
this reason have been called vortices. More precisely, the names
negative vortices and positive vortices have been given to the points
(or cells) where values appear which are respectively smaller than the
minimum and greater than the maximum for T consecutive iterations
(where T is a parameter which is chosen by the operator).

By indicating with  V0  the negative vortices and with  VM  the
positive ones, the recognition of the vortices is performed, every T
iterations, with the following criteria:

If mij = –Tg mij = V0

If mij = +Tg mij = VM

otherwise mij = mij

Another important result is obtained by applying this method to
pictures of many different kinds, because it has been noticed that the
space distribution of the vortices is picture-dependent. The vortices’
pattern does not depend therefore on general characteristics of the
algorithm, but on specific properties of the examined picture. It is as
if a picture had a specific image in the memory space exactly as it has
one in the real space. This brings us immediately to the following
question: Is it possible to use the information that appears in the memory
matrix to improve the reconstruction in the structure matrix?

The question is absolutely natural because the vortices appear to
have a precise, and often even obvious, meaning. If a negative (or a
positive) density value keeps reappearing in the same point for T
consecutive times, it is clear that in the original structure that point
must be a minimum (or a maximum). But if this is true, it is clearly
useless to keep treating that point as an unknown, and we can therefore
erase it from the list of the unknowns. The advantage of this operation
is obvious: while the number of equations (p .r) remains constant, the
number of the unknowns (n2) is decreasing.

If this is confirmed, the problem of reconstructing structures from

The memory matrix
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incomplete projections could be solved. The key obstacle, in this
problem, is precisely the fact that the number of equations is smaller
than the number of unknowns, but if the unknowns are continuously
reduced, eventually they would reach the same number as the
equations, and at that point an exact reconstruction would be
guaranteed. As we can see, the production of “illegal” density values
– which was looking like a structural defect of the algorithm – opens
the way to unexpected developments.

Density modulation

The first algorithm to use memory matrices was presented at
Brookhaven’s first international workshop on reconstruction
techniques with the name of “density modulation” (Barbieri, 1974).
This method recognizes the vortices with equations 3.7 and 3.8, and
then subtracts them from the list of the unknowns. By indicating with
N0

�k  and  NM
�k the number of negative and positive vortices that fall in

the ray (�,k), the values of the reconstructed matrix at iteration q + 1
are obtained with the following instructions:

If mij = V0  or  VM     fij
q+1 = fij

q

(3.9)
     g

�k
 – g

�k
q

otherwise  f
ij

q+1  =  f
ij

q  +    ______________________________

        N
�k

 – N0
�k

 – NM
�k

The results obtained with density modulation depend, as we have
seen, upon the choice of a parameter T that represents how many
times an illegal value must appear in a cell in order to be considered
a vortex. If  T = 10, for example, it is reasonable to conclude that the
point in question is a true vortex, but in this case the procedure is
lengthy and the number of unknowns decreases very slowly. The choice
of  T = 5, on the other hand, increases the speed of the algorithm but
also increases the probability of making mistakes in vortex recognition.
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The first reconstructions performed with density modulation were
made with the choice T = 5, and the results (Figure 3.7D) clearly showed
that some points had been erroneously classified as vortices. Despite
these mistakes, however, the reconstructions obtained with density
modulation were greatly superior to  those of the other algorithms
(Figure 3.7B and 3.7C), and the memory method therefore is effective
even when the choice of its parameters is not ideal. The most important
result, however, is another one. The original pictures (Figure 3.7A)

Figure 3.7 A black-and-white picture (A) reconstructed from 12 projections
with Convolution (B), ART (C) and density modulation (D). The original
picture was a 120 . 120 matrix, and in order to perform a complete
reconstruction it would have been necessary to work with 120 projections in
a full 180o angular range.

A B

C D

Density modulation
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were matrices with 120 . 120 cells, and we know, from equation 3.5,
that a complete reconstruction requires a minimum of 120 projections.
The reconstructions of Figure 3.7 were made instead with only 12
projections, i.e. only 10% of the minimum information was actually
used. This is clearly an example of reconstruction from incomplete
projections. The results obtained with T = 5 would surely have been
better with T = 10, but this is not the point. What really matters
is that the main goal has been achieved even with T = 5. That goal
was the proof that the memory matrix does allow us to decrease the
number of unknowns, and the results tell us that this is precisely what
happens.

The hypotheses that were made about density modulation,
therefore, are valid: a memory matrix does allow us to obtain new
information about the structure that we are reconstructing, and we
can progressively move towards the point where a complete
reconstruction becomes possible.

MRM: the family of memory algorithms

One of the interesting features of density modulation is that the
reconstructions of black-and-white pictures (Figure 3.7) contain fewer
errors than those obtained with grey (or chiaroscuro) pictures, i.e.
with pictures which have intermediate degrees of density (Figure 3.8).
This is understandable, because in black-and-white images all points
are either minima or maxima, and the number of vortices is potentially
very high. In grey pictures, instead, minima and maxima are far less
numerous, and therefore the number of points that can be taken away
from the list of the unknowns is much smaller.

This result is interesting because it focuses our attention on the
individual features of the memory matrix. If only vortices are
memorized, it is obvious that the algorithm performs better with
pictures that have a high potential number of vortices, but if other
features could be memorized, it would become possible to reduce
substantially the unknowns even with grey  pictures. We have therefore
the problem of discovering if other features exist which allow us to
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reduce the number of the unknowns, i.e. if there are other types of
memory matrices.

A first hint came from the discovery that, in some cells, the
reconstructed values can remain virtually unchanged for many
consecutive iterations. In order to find these cells – which are called
stationary points – it is necessary to keep a record of the values obtained
in any two consecutive iterations, and to store their differences in a

Figure 3.8 A grey, or chiaroscuro, picture (A) reconstructed from 12
projections with Convolution (B), ART (C) and density modulation (D). As
in the previous case, a complete reconstruction would have required 120
projections equally spaced in the 180o range.
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memory matrix with the instruction

mij = mij + | fij
q+1 – fij

q |

After a predetermined number T of iterations, the sum of these
increments is evaluated, and one can see whether it has exceeded a
threshold  T d, where d is so small a quantity that any density change
inferior to it can be regarded as practically insignificant. The cells
where that sum is not greater than T d are regarded as stationary points,
and their formal recognition (with a label S) is performed every T
iterations with the following criteria:

If m
ij
  > 0 and ≤ T d          m

ij
 = S

   otherwise          mij = mij

When stationary points have been identified, it is no longer necessary
to treat them like the other points, and we can take them away from
the list of the unknowns with the same procedure that was adopted
for the vortices.

In practice one can use two different memory matrices – one for
vortices and another for stationary points – but it is also possible to
use the same matrix for both points. In this case, by indicating with
N0

�k
, NM

�k
 and NS

�k
 respectively the negative vortices, the positive

vortices and the stationary points that fall within the ray (�,k), the
values of the reconstruction matrix at iteration q + 1 are calculated
with the following algorithm:

   If m
ij
 = V0 , VM

 or S  f
ij

q+1 = f
ij

q

(3.12)
g

�k
 – g

�k
q

   otherwise     fij
q+1  =  fij

q  +   ____________________________________

         N
�k

 – N0
�k

 – NM
�k

 – NS
�k

There are, in conclusion, at least two different types of memory
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matrices, and one can use them either separately or together. This
makes it important to distinguish between the memory matrix
method and the particular algorithms which are based on it, and in
order to underline such a distinction it is convenient to adopt a new
terminology. The family of all algorithms which use memory matrices
is referred to as MRM (Memory Reconstruction Method), whereas
any individual member of this family is indicated with the label MRM
followed by a number. More precisely, MRM-1 is the algorithm which
employs only the vortex memory (density modulation), MRM-2 uses
only the stationary points memory, and MRM-3 is the algorithm of
equation 3.12 which exploits both memories.

At this point we are left with the problem of discovering yet more
memory matrices, and here we have plenty of suggestions. It is
plausible, for example, that a memory of boundaries, or more generally
a memory of discontinuities, could be built, but we can leave these
developments to the future. We have seen that the memory matrix
method can indeed perform reconstructions from incomplete
information, and therefore we already have what we were looking
for: a model that may help us understand the logic of embryonic
development.

The two general principles of MRM

When we speak of mathematical models for biology, we usually
refer to formulae (such as the Hardy–Weinberg theorem, or the
Lotka–Volterra equations) that effectively describe some features of
living systems. In our case, embryonic development is not described
by integrals and deconvolutions, and the formulae of the
reconstruction algorithms cannot be a direct description of what
happens in embryos. There is however another type of mathematical
model. The formulae of energy, entropy and information, for example,
apply to all natural processes, irrespective of their mechanisms, and
at this more general level there could indeed be a link between
reconstruction methods and embryonic development. For our
purposes, in fact, what really matters are not the formulae per se, but

MRM: the family of memory algorithms
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the general conclusions that they allow us to reach, and among these
there are at least two which are indeed worthy of attention.

In the MRM model, the initial memory matrix is a tabula rasa, a
white page that is gradually filled during the reconstruction process,
while the reconstructed picture starts with a uniform image, and
becomes progressively differentiated in the course of time. A
reconstruction with the MRM model, in other words, is a set of two
distinct reconstructions that are performed in parallel. The point is
that this double reconstruction is necessary for reasons that are
absolutely general.

A picture and its projections are both structures of the real space,
and, when projections are incomplete, there is no possibility of
perfoming exact reconstructions if information comes only from
structures of the real space (or from equivalent structures of the
Fourier space). Only in a related but autonomous space we can find
genuinely new information, and the memory space is precisely that
type of independent world. It is in fact the only space where a system
can get the extra information that allows it to increase its own
complexity. The MRM model, in other words, leads to a universal
concept: to the principle that there cannot be a convergent increase of
complexity without memory.

The second fundamental characteristic of the MRM model is
that information can be transferred from memory space to real space
only by suitable conventions. In order to decrease the number of
the unknowns in real space, it is necessary to give a meaning to the
structures that appear in memory space, and this too is a conclusion
whose validity is absolutely general. Real space and memory space
must be autonomous worlds, because if they were equivalent (like
real space and Fourier space, for example) they would convey the
same information and no increase in complexity would be possible.
But between two independent worlds there is no necessary link,
and no information can be transferred automatically from one to
the other. The only bridge that can establish a link between such
worlds is an ad hoc process, i.e. a convention or a code. This amounts
to a second universal principle: there cannot be a convergent increase
of complexity without codes.

A new model for biology
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The Memory Reconstruction Method, in conclusion, gives us two
general principles that must be valid for all systems which increase
their own complexity, and embryos are such systems. The MRM model
predicts therefore the existence of biological structures which are
equivalent to reconstruction codes and to memory matrices. More
precisely, the model leads to the conclusion that in embryos there
must be codes and memories which are made of organic molecules,
i.e. organic codes and organic memories. At this point, therefore, we
can go back to biology and look for the existence of such structures
in real life.

The two general principles of MRM


